sábado, 3 de octubre de 2015

Aplicaciones de los Satélites Artificiales - López Morales Elsa Victoria

Aplicaciones de los Satélites Artificiales

Estos artefactos son muy útiles para el hombre moderno, son los protagonistas principales de las comunicaciones en el mundo; gracias a ellos, recibimos señales de televisión, de radio y teléfono, o tenemos información valiosa del clima, de nuestro medio ambiente y del espacio.
Hasta ahora tienen como principal objetivo estudiar la Tierra -superficie, atmósfera y entorno- y los demás cuerpos celestes. En el inicio de la exploración espacial, se consideró prioritario conocer las condiciones que imperaban sobre un objeto que girara repetidamente alrededor del planeta. Esto era necesario, pues poco tiempo más tarde el propio hombre debería viajar al espacio. Estos aparatos permitieron que el conocimiento del Universo sea mucho más preciso en la actualidad. Los satélites artificiales tienen muchas aplicaciones en la vida cotidiana. Muchos de ellos sirven para realizar telecomunicaciones, como el Internet, la televisión y el teléfono.
Otros satélites se utilizan para investigar el espacio exterior, las estrellas y galaxias y otros para observar fenómenos que ocurren en la tierra.
Existen además satélites, como la estación espacial internacional, que se utilizan para realizar experimentos científicos en el espacio.

Ø  USO EN TELEFONÍA Y TELEVISIÓN: En una primera fase, los satélites nacionales estadounidenses se utilizaron principalmente para comunicaciones telefónicas de larga distancia; las transmisiones televisivas aparecían sólo esporádicamente. En 1975. Un servicio estadounidense de televisión de pago, con menos de 60.000 abonados, anunció que utilizaría un satélite nacional para distribuir sus programas a las redes de TV vía cable de todo el país. El 30 de septiembre de 1975, Home Box Office Inc. (HBO) distribuyó a redes vía cables afiliados, de Florida y Mississippi, la retransmisión en directo del encuentro de boxeo, válido para el campeonato mundial de los pesos pesados, entre Muhammad Allí y Joe Frazier.



Ø  USO EN METEOROLOGÍA: Aunque las imágenes del tiempo proporcionadas por el Meteosat aparecen todos los días en las televisiones europeas, la mayoría de nosotros no nos damos cuente de hasta qué punto dependemos de las previsiones meteorológicas precisas. Solamente en términos de ahorro de recursos, la contribución de la meteorología europea es considerable.
 La importancia de la meteorología en muchos campos de la actividad humana hizo comprender rápidamente a Europa que, para las previsiones del tiempo, no era posible depender de otros países. Así, uno de los primeros empeños de la Agencia Espacial Europea fue precisamente lanzar satélites meteorológicos.
El primero de la serie fue puesto en órbita en noviembre de 1977. Se trataba del Meteosat-1, seguido del Meteosat-2 en junio de 1981. El Meteosat-3 fue llevado al espacio en junio de 1988; en marzo de 1989 le tocó el turno al Meteosat-4, llamado también MOP-1; en marzo de 1991 partió el Meteosat-5 o MOP-2 y, en noviembre de 1993, el Meteosat-6 o MOP-3. Actualmente, tres de ellos todavía están en activo: el MOP-1, el MOP-2 y el MOP-3, que giran alrededor de la Tierra a 36.000 km de altura en órbita geoestacionaria.


Ø  USOS CIENTÍFICOS: Para estudio del universo y de los cuerpos celestes, para fotografías la superficie terrestre y analizar suelos, relieves, recursos naturales y cualquier tipo de otra información que sea complicado su acceso.  
Constituyen la familia más numerosa, si se exceptúa la de los utilizados con fines militares. Ello es así por varias razones: en primer lugar, el espacio que circunda la Tierra es poco conocido; desde muchos puntos de vista interesa conocer la distribución de las radiaciones que abarcan toda la gama del espectro, desde los rayos X a las ondas de radio, meteoritos, capas ionizadas, campos magnéticos de origen no sólo terrestre, sino también solar e interplanetario, etc.
Algunos satélites han sido diseñados para obtener información sobre diversos aspectos relacionados con nuestro planeta: las capas ionizadas que lo rodean, la densidad y composición de la alta atmósfera, la intensidad de la radiación térmica recibida por la Tierra y el porcentaje que vuelve al espacio al reflejarse en las nubes o en la superficie, la confección de un mapa del campo magnético en torno al planeta, la naturaleza y energía de las partículas que componen los cinturones de radiación, características de la ionosfera en cuanto a transparencia a diversas frecuencias de radio, etc.

Ø  A INVESTIGACIONES ASTRONÓMICAS: Sobre todo en el campo de la radioastronomía. A este respecto, los satélites artificiales son muy útiles, ya que las radiaciones de determinadas longitudes de onda de procedencia interplanetaria son filtradas por la atmósfera y no pueden ser captadas por los radiotelescopios instalados en la superficie terrestre. Por tanto, la única manera de detectarlas es instalando equipos receptores por encima de la atmósfera.


Ø  ESTUDIO DEL SOL: las tormentas que a veces se desencadenan en la fotosfera, la evolución de las manchas solares y el “viento solar” o chorro de partículas subatómicas que continuamente son emitidas por nuestra estrella. También los hay especializados en la fotografía estelar, no ya en la gama de la luz visible, sino en la del ultravioleta, gran parte de la cual es retenida por la atmósfera. En cambio, los observatorios en órbita terrestre nunca se emplean para fotografiar planetas; es mucho más provechoso recurrir a sondas interplanetarias que sobrevuelan el objetivo a poca distancia, obteniendo imágenes mucho más detalladas.

Ø  USO COMO G.P.S.: El Global Positioning System es una red de satélites que identifica con extrema precisión cualquier posición, y gracias a la cual es imposible perderse. Hasta no hace mucho, todo aquel que se aventuraba en pleno océano sólo disponía para calcular su posición de la observación de las estrellas o del uso de la brújula y el sextante. Ahora, gracias a la moderna tecnología de los satélites, es posible efectuar esta operación de un modo más sencillo.
Con la simple presión de un botón de un pequeño instrumento portátil, el Global Positioning System (Sistema de Posicionamiento Global), podemos determinar nuestra posición con un error de pocos metros. Esta tecnología va destinada a pilotos, marinos, alpinistas y a cualquier individuo que desee o deba conocer su propia posición con un margen de error muy pequeño.
El empleo de satélites para la navegación o la determinación de localizaciones no son nuevo. En 1959, la Marina militar norteamericana lanzó su primer satélite Transit para uso de los submarinos lanzamisiles Polaris y de los buques de combate de superficie; este sistema permitía determinar la posición con un error de 150 metros.
El Global Positioning System es todavía más preciso. Establecido y controlado por las fuerzas armadas estadounidenses, utiliza una red de 24 satélites Navstar, 21 de los cuales están en activo y tres son de reserva, colocados en seis planos orbitales que se cruzan a una altura de 20.000 km. El primero de estos satélites fue lanzado en 1978, pero el sistema no llegó a ser operativo hasta 1987, cuando hubo en órbita 12 satélites; en diciembre de 1993, la red quedó completada. 



Ø  REGISTRO DE METEORITOS: Desde los primeros años de la investigación espacial, uno de los puntos de estudio más importantes fue investigar acerca de la abundancia y distribución de micro-meteoritos en las proximidades de la Tierra. Estos son partículas que en general no superan el milímetro de diámetro y que, moviéndose a enormes velocidades, a veces entran en la atmósfera terrestre, donde la fricción del aire los desintegra.
Al principio se exageró mucho acerca del peligro que los meteoritos representarían de cara a futuros viajes espaciales tripulados. Hoy se sabe que las partículas de más de un milímetro de diámetro son muy raras, tanto que una nave podría permanecer en el espacio durante años sin encontrar ninguna en su camino. En cuanto a los granos de polvo cósmico, aunque más abundantes, tampoco ofrecen motivo de preocupación. Por lo general se volatizan al chocar contra las paredes del vehículo, por muy delgadas que éstas sean.
En 1965 se lanzó el primero de los grandes satélites Pegasus, destinados exclusivamente al estudio de los meteoritos, listaban equipados con unas grandes “alas” constituidas por más de doscientos elementos sensores: dos láminas de cobre o aluminio separadas por una de material aislante, con lo que formaban otros tantos condensadores eléctricos, cargados a una tensión de 40 voltios. Cada vez que un meteorito atravesaba una de tales células, el calor desarrollado en el impacto vaporizaba parte del metal y el aislante, estableciendo un momentáneo corto circuito entre las dos láminas. A continuación, el condensador se descargaba y transmitía a In Tierra la correspondiente señal. Una vez disipado el vapor, el condensador volvía u cargarse y quedaba en disposición de registrar nuevos choques.
Durante su primer año de funcionamiento, y por metro cuadrado de superficie sensible, el Pegasus 1 detectó 57 partículas con energía suficiente para atravesar 37 milésimas de milímetro de aluminio; cinco en sus células de 2 décimas de milímetro y sólo dos en las de 4 décimas.


Ø  MEDIDA DE LAS RADIACIONES: La radiación es una forma de energía que se encuentra en el espacio en múltiples formas. La luz corriente es radiación; las ondas de radio, los rayos X e incluso el calor emitido por un cuerpo a cualquier temperatura también lo son. Todas ellas se agrupan bajo la denominación común de “radiación electromagnética”; el único factor que permite diferenciarlas es su frecuencia o longitud de onda.
En cuanto a la medición de las radiaciones ultravioletas e infrarrojas, existen dispositivos fotoeléctricos sensibles a diferentes bandas de frecuencias, de modo que resulta muy fácil seleccionar la que se desea estudiar. Ciertos tipos de satélites disponen de mecanismos de orientación para mantener tales sensores continuamente dirigidos hacía la fuente de radiación, por lo general el Sol o la propia Tierra.

Ø  ESTUDIO DEL MAGNETISMO: El campo magnético que rodea nuestro planeta es el resultado de la superposición de varios campos de origen diverso: el propio campo magnético terrestre, el solar y el de origen galáctico, que en conjunto originan un cuadro de enorme complejidad, sujeto, además, a incesantes variaciones.
Por lo general, los magnetómetros de que van provistos los satélites artificiales son instrumentos tan sensibles que pueden ser  perturbados incluso por las corrientes eléctricas que circulan por los equipos de a bordo del satélite o por sus piezas metálicas. Por tanto, los dispositivos sensores se mielen situar en el extremo de largas pértigas que se despliegan automáticamente al entrar en órbita.





Usos de los Satélites Artificiales





Autor: López Morales Elsa Victoria 
N/L: 23


9 comentarios: